1

I am struggling answering this question for myself: How can i prove that a Group $G$ is abelian, if $$g\circ g=e \ \forall g \in G $$

A group is abelian if this is true: $$a\circ b = b\circ a\ \forall a,b \in G$$ But i dont understand how to prove this.

Hope someone can help me out with this!

greedsin
  • 571

2 Answers2

4

$a$ and $b$ commute iff $a \circ b = b \circ a$ iff $a \circ b \circ a^{-1} \circ b ^{-1} = e$.

However $a^{-1} = a$ and $b^{-1} = b$ so then $a \circ b \circ a^{-1} \circ b ^{-1} = a \circ b \circ a \circ b = (a \circ b) \circ (a \circ b) = e$ by hypothesis.

James
  • 5,443
2

Note that $g=g^{-1}$ for any $g$. So, $(ab)^2=abab=e$ and thus $ab=b^{-1}a^{-1} = ba$ for all $a,b \in G$.

sqtrat
  • 2,257