I was solving this equation:
$$\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta\dots}}}}=1$$
I solved it like this:
The given equation can be written as:
\begin{align*} \sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta\dots}}}}&=\sqrt{1 \sqrt{1 \sqrt{1\dots}}} \\ \cos{\theta}&=1 \\ \theta&=\arccos {1} \end{align*}
So the solution is $2n\pi, n \in \mathbb Z$.
Have I solved it the wrong way?
(The title originally contained a more general question: Does $\sqrt{a \sqrt{a \sqrt{a\dots}}}=\sqrt{b \sqrt{b \sqrt{b\dots}}} \implies a=b$? The current title is consistent with the body and the accepted answer.)