7

I was solving this equation:

$$\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta\dots}}}}=1$$

I solved it like this:

The given equation can be written as:

\begin{align*} \sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta\dots}}}}&=\sqrt{1 \sqrt{1 \sqrt{1\dots}}} \\ \cos{\theta}&=1 \\ \theta&=\arccos {1} \end{align*}

So the solution is $2n\pi, n \in \mathbb Z$.

Have I solved it the wrong way?

(The title originally contained a more general question: Does $\sqrt{a \sqrt{a \sqrt{a\dots}}}=\sqrt{b \sqrt{b \sqrt{b\dots}}} \implies a=b$? The current title is consistent with the body and the accepted answer.)

  • I see no particular reason for it to be true. After all, $x^2 = 1^2$ doesn't imply $x = 1$. – Patrick Stevens Feb 21 '16 at 10:08
  • 1
    Take for example, $y=\sqrt{2\sqrt{2\sqrt{2\cdots}}}$ – GoodDeeds Feb 21 '16 at 10:09
  • 7
    $\sqrt{a\sqrt{a\cdots }}=a^{1/2+1/4+\cdots}=a$ and $\sqrt{b\sqrt{b\cdots }}=b$, so the implication is true. – user236182 Feb 21 '16 at 10:17
  • 1
    If anything the ellipses should be inside the square roots: $\sqrt{b \sqrt{b \sqrt{b\ldots}}}$. But "infinite expressions" are not expressions, and undefined unless some specific meaning is given to them using some appropriate limit (which of course must also converge). – Marc van Leeuwen Feb 23 '16 at 14:27

4 Answers4

16

$$\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}}...=1$$ $$(\cos{\theta})^{1/2+1/4+1/8+...}=1$$ $$(\cos{\theta})^{1}=1$$ $$\cos{\theta}=1$$ $$\theta=2k\pi,k\in\mathbb Z$$

Adi Dani
  • 16,949
4

To answer the question in the title, let $A=\sqrt{a \sqrt{a \sqrt{a\cdots}}}$ and $B=\sqrt{b \sqrt{b \sqrt{b\cdots}}}$.

Then $A=B$ implies $aA=A^2=B^2=bB$ and so $a=b$.

lhf
  • 216,483
3

Another answer

suppose that $$\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}}...=1$$ square both side you get $$cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}...=1$$ We know that $$\ \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}...=1$$ thus $$\cos{\theta}*1=1$$ therefore $$\theta=2k\pi,k\in\mathbb Z$$

0

Hint:

$$\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}}...=1.$$

Multiply by $\cos(\theta)$ and take the square root. You get

$$\sqrt{\cos(\theta)}=\sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta} \sqrt{\cos{\theta}}}}}...=1.$$