Suppose $(X,d)$ is a metric space, then question is to prove that $\rho(x,y)=\frac{d(x,y)}{1+d(x,y)}$ is a metric.
This question is from Munkres Topology book.
Hint : If $f(x)=\frac{x}{1+x}$ for $x>0$ us mean value theorem to show that $f(a+b)-f(b)\leq $ some wierd symbol which i assume to be $f(a)$..
Suppose we prove that $f(a+b)-f(b)\leq f(a)$ then $f(a+b)\leq f(a)+f(b)$. We then have $$\frac{a+b}{1+a+b}\leq \frac{a}{1+a}+\frac{b}{1+b}$$
We have $f'(x)> 0$ so, $f$ is increasing...
We have $d(x,y)\leq d(x,z)+d(z,y)$.. So, we have $f(d(x,y))\leq f(d(x,z)+d(z,y))$ i.e., $$\frac{d(x,y)}{1+d(x,y)}\leq \frac{d(x,z)+d(z,y)}{1+d(x,y)+d(z,y)}$$
With $$\frac{a+b}{1+a+b}\leq \frac{a}{1+a}+\frac{b}{1+b}$$ we have $$\rho(x,y)=\frac{d(x,y)}{1+d(x,y)}\leq \frac{d(x,z)+d(z,y)}{1+d(x,y)+d(z,y)}\leq \frac{d(x,z)}{1+d(x,z)}+\frac{d(z,y)}{1+d(z,y)}=\rho(x,z)+\rho(z,y)$$
So, all that is left to prove is that $f(a+b)-f(b)\leq f(a)$..
Suppose that $a<b$.. By mean value theorem, there exists $c\in (b,a+b)$ such that $$\frac{f(a+b)-f(b)}{(a+b)-b}=f'(c)=\frac{1}{1+c^2}$$ i.e., $$f(a+b)-f(b)=\frac{a}{(1+c)^2}\leq \frac{a}{(1+a)^2}\leq \frac{a}{1+a}=f(a)$$
Last inequality holds because $a<c$
Suppose that $b<a$.. By mean value theorem, there exists $c\in (a,a+b)$ such that $$\frac{f(a+b)-f(a)}{(a+b)-a}=f'(c)=\frac{1}{1+c^2}$$ i.e., $$f(a+b)-f(a)=\frac{b}{(1+c)^2}\leq \frac{b}{(1+b)^2}\leq \frac{b}{1+b}=f(b)$$
Last inequality holds because $b<c$..
So, in any case we have $f(a+b)\leq f(a)+f(b)$ and we are done..
I just want to know if there are any gaps in this solution..