I want to do a proof that $SL(2,\mathbb R)\times SL(2, \mathbb R) \cong SO^+(2,2)$. My idea was to use the same Argument as in this Question. So I wanted to begin with the Basis of the Lie algebra $\mathfrak{sl(2,\mathbb R)} \times \mathfrak{sl(2, \mathbb R)}$, but i am not sure how to do it. I know that the basis of $\mathfrak{sl(2, \mathbb R)}$ is $$ \mathfrak{sl(2,\mathbb R)} = span \left\{ \left(\begin{matrix} 0 & 1\\ 0 & 0 \end{matrix}\right), \left(\begin{matrix} 0 & 0\\ 1 & 0 \end{matrix}\right), \left(\begin{matrix} 1 & 0\\ 0 & -1 \end{matrix}\right) \right\}. $$ But i dont know what to do with this result. I read, that $$ \left(\begin{matrix} 1 & 0\\ 0 & 1 \end{matrix}\right), \left(\begin{matrix} 1 & 0\\ 0 & -1 \end{matrix}\right), \left(\begin{matrix} 0 & 1\\ -1 & 0 \end{matrix}\right), \left(\begin{matrix} 0 & 1\\ 1 & 0 \end{matrix}\right) (*) $$ Is a basis of $\mathfrak{sl(2,\mathbb R)} \times \mathfrak{sl(2, \mathbb R)}$ wich gives for the following bilinear form: $$ \langle x, y \rangle := tr(x\cdot wy^Tw^{-1}) \qquad \qquad w := \left(\begin{matrix} 0 & -1\\ 1 & 0 \end{matrix} \right) $$ the desired signature $2,-2,2,-2$. On the other hand, this question, $\dim_{\mathbb{R}}(\mathfrak{so(2,2)}) = 6$. Therefore $\dim_{\mathbb R}(\mathfrak{sl(2, \mathbb R) \times sl(2, \mathbb R)})$ should also be $6$. Was my conclusion in this question wrong, and the statement, $\dim_{\mathbb{R}}(\mathfrak{so(2,2)}) = 6$ is wrong, or is $(*)$ not a basis of $\mathfrak{sl(\mathbb R, 2)\times sl(\mathbb R,2)}$?
What am i missing, and can someone help me, to write this proof in a more explicit way?