Using the Fibonacci sequence and induction prove that
$$F_{n-1}F_{n+1}-F_{n}^2 = (-1)^n, \space \space n=1,2,3...$$
My efforts so far:
The basis holds for $n=1$
Induction step: $$F_{n-1}F_{n+1}-F_{n}^2 + F_{n}F_{n+2}-F_{n+1}^2 = (-1)^{n+1}$$ LHS: $$(-1)^n + F_{n}F_{n+2}-F_{n+1}^2 = $$ $$(-1)^n + F_n(F_{n+1}+F_{n})- F_{n+1}(F_n+F_{n-1}) = $$ $$(-1)^n+F_n^2 - F_{n+1}F_{n-1} = $$ $$(-1)^n-(-1)^n=0$$
What am I doing wrong?