3

To find the limit $$\lim_{x\to\infty} (\sqrt{9x^2+x} -3x)$$

Basically I simplified this down to

$$\lim_{x\to\infty} \frac{1}{\sqrt{9+1/x}+3x}$$

And I am unaware of what to do next. I tried to just sub in infinity and I get an answer of $0$ , since $1 / \infty = 0$. However, on symbolab, when I enter the problem it gives me an answer of $1/6$.

Can anyone please explain to me what I need to do from this point? I haven't learned l'Hopitals rule yet so please don't suggest that. Thanks

1 Answers1

3

For $x>0$ we have $$\sqrt{9x^2+x}-3x=\frac{\big(\sqrt{9x^2+x}-3x\big)\big(\sqrt{9x^2+x}+3x\big)}{\sqrt{9x^2+x}+3x}= \\ =\frac{9x^2+x-9x^2}{\sqrt{9x^2+x}+3x}=\frac{x}{\sqrt{9x^2+x}+3x}=\frac{1}{\sqrt{9+\frac{1}{x}}+3}=$$ Thus: $$\lim_{x\rightarrow\infty}\big(\sqrt{9x^2+x}-3x\big)=\lim_{x\rightarrow\infty}\frac{1}{\sqrt{9+\frac{1}{x}}+3}=\frac{1}{6}$$

KonKan
  • 7,344