While solving a problem I encountered this:
$$\sum _{ k=1 }^{ \infty }{ \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { k\left( k+n \right) }^{ 2 } } } } $$
For this I tried the following:
$$\sum _{ k=1 }^{ \infty }{ \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ { k\left( k+n \right) }^{ 2 } } } } =\sum _{ k=1 }^{ \infty }{ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { k\left( k+n \right) }^{ 2 } } } } +\zeta \left( 3 \right) =\sum _{ k=1 }^{ \infty }{ \sum _{ n=1 }^{ k }{ \frac { 1 }{ { k\left( n \right) }^{ 2 } } } } +\zeta \left( 3 \right) $$
From here I couldn't proceed. I'm new to multiple summations. Please help.