2

How could I prove the above statement?

For $G$ nilpotent and $N \lhd G$, how do I show that $N \cap Z(G) \neq 1$?

BetaY
  • 589

1 Answers1

5

Take the upper central series of the group

$$1=Z_0\le Z_1\le\ldots\le Z_n=G$$

Since $\;1\neq N\lhd G\;$ there exists $\;1\le k< n\;$ such that $\;N\cap Z_k=1\;$ but $\;N\cap Z_{k+1}\neq 1\;$ , so take commutator groups:

$$[G, N\cap Z_{k+1}]\le[G,N]\cap[G,Z_{k+1}]\le N\cap Z_k=1$$

because normality: a subgroup $\;N\le G\;$ is normal iff $\;[G,N]\le N\;$ , and because centrality of the upper central series: $\;[G,Z_i]\le Z_{i-1}\;$

Thus, $\;[G, N\cap Z_{k+1}]=1\iff N\cap Z_{k+1}\subset Z_1=Z(G)$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287