So I am having trouble getting the sum of the series:
$1 + 2\left(\frac32\right) + 3\left(\frac{3^2}{2^2}\right) + ... + k\left(\frac{3^{k-1}}{2^{k-1}}\right)$
I cant figure out for the life of me how to figure out the sum of this.
So I am having trouble getting the sum of the series:
$1 + 2\left(\frac32\right) + 3\left(\frac{3^2}{2^2}\right) + ... + k\left(\frac{3^{k-1}}{2^{k-1}}\right)$
I cant figure out for the life of me how to figure out the sum of this.
Let $$ S = 1+a+a^2+\cdots + a^k = {1-a^{k+1}\over 1-a} $$ Differentiating for $a$ we get $$ S^\prime = 1 + 2a + 3a^2 + \cdots + ka^{k-1} = {a^k(ka-k-1)+1\over (a-1)^2} $$ It is then obvious that for $a={3\over 2}$ we get the wanted sum, that is $$ 1+2\bigl({3\over 2}\bigr) + \cdots + k\bigl({3\over 2}\bigr)^{k-1}=\bigl({3\over 2}\bigr)^k(2k-4)+4 $$
$$\sum\limits_{i=1}^{k}{i \cdot \left(\frac{3}{2}\right)^{(i-1)}}=\sum\limits_{i=0}^{k-1}{\sum\limits_{j=i}^{k-1}{{\left(\frac{3}{2}\right)}^j}}$$ $$=\sum\limits_{i=0}^{k-1}{\frac{ \left(\frac{3}{2}\right)^i -\left(\frac{3}{2}\right)^k}{1-\frac{3}{2}}}$$ $$=\frac{\frac{1- \left(\frac{3}{2}\right)^k }{ 1-\frac{3}{2}}-k\left(\frac{3}{2}\right) ^k}{-\frac{1}{2}}$$ $$=(2k-4)\left(\frac{3}{2}\right)^k+4$$
$$ \sum_{k=1}^{n} k a^{k-1} = \frac{d}{da}\sum_{k=1}^n a^k = \dfrac{d}{da}\left(\sum_{k=0}^na^k -1\right) $$