You want to calculate $1-P(\mbox{sum}\le 17)$. Now, $P(\mbox{sum}\le 17)=\sum_{k=10}^{17}P(\sum=k)$ (formally, it would be $P(\mbox{sum}\le 17)=\sum_{k=1}^{17}P(\sum=k)$, but the minimum sum is 10. Then for $k\le 10$, $P(\mbox{sum}=k)=0$).
Now, fix $k\in\{10,11,...,17\}$. You want to distribute $k$ identical balls into 10 distinguishable boxes such that each box has at least one ball and at most 6 balls. By generating functions method, it can be done with polynomial $p(x)=(x+x^2+...+x^6)^{10}=x^{10}(1+x+...+x^5)^{10}=x^{10}(1-x^6)^{10}(1-x)^{-10}$.
Now, the coefficient of $x^k$ in $p(x)$ is the same of $x^{k-10}$ on $(1-x^6)^{10}(1-x)^{-10}\\=\left(\binom{10}{0}-\binom{10}{1}x^6+\binom{10}{2}x^{12}-...+\binom{10}{10}x^{60}\right)\sum_{r=0}^\infty\binom{10+r-1}{r}x^r$.
But $k-10=0,1,2,...,7$. Thus, coefficients are
$x^0$) Is $\binom{10}{0}\binom{9}{0}$
$x^1$) Is $\binom{10}{0}\binom{10}{1}$
$x^2$) Is $\binom{10}{0}\binom{11}{2}$
$x^3$) Is $\binom{10}{0}\binom{12}{3}$
$x^4$) Is $\binom{10}{0}\binom{13}{4}$
$x^5$) Is $\binom{10}{0}\binom{14}{5}$
$x^6$) Is $\binom{10}{0}\binom{15}{6}-\binom{10}{1}\binom{9}{0}$
$x^7$) Is $\binom{10}{0}\binom{16}{7}-\binom{10}{1}\binom{10}{1}$
Thus, the total of sums of the dices for $\sum\le 17$ is $\binom{9}{0}+\binom{10}{1}+\binom{11}{2}+\binom{12}{3}+\binom{13}{4}+\binom{14}{5}+\binom{15}{6}+\binom{16}{7}-10\binom{10}{0}-10\binom{9}{1}=\binom{17}{7}-110$.
But the total of outputs that the 10 dices can be are $6*6*...*6=6^{10}$.
Thus, answer is $1-\frac{\binom{17}{7}-110}{6^{10}}=1-\frac{19338}{6^{10}}=0.99968$