$$\int \frac{dx}{x^3+1}$$
so at first $\frac{1}{x^3+1}=\frac{-x+2}{3(x^2-x+1)}+\frac{1}{3(x+1)}$
$$\int \frac{dx}{x^3+1}=\frac{1}{3}\int \frac{-x+2}{(x^2-x+1)}dx+\frac{1}{3}\int\frac{dx}{(x+1)}$$
For
$$\frac{1}{3}\int\frac{dx}{(x+1)}=\frac{1}{3}ln|x+1|+C$$
For
$$\frac{1}{3}\int \frac{-x+2}{(x^2-x+1)}dx=\frac{1}{3}\int \frac{-x+2}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}dx=-\frac{1}{3}\int \frac{x}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}dx$$
$$+\frac{2}{3}\int \frac{dx}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}$$
For
$$\frac{2}{3}\int \frac{dx}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}=\frac{1}{\sqrt{3}}arctan(\frac{2x}{\sqrt{3}}-\frac{1}{\sqrt{3}})+C$$
How should I approach $$-\frac{1}{3}\int \frac{x}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}dx$$?