There is a question posted here that the "Generalized Inclusion-Exclusion Principle" is used to be answered. See here: Probability of number of unique numbers in $37$ Roulette Wheel spins.
In this type: $$\sum_{k=0}^{37}(-1)^{k+m-37}\binom{k}{37-m}\binom{37}{k}(37-k)^n$$
Plugging in m=24 and n=37 we get the result:
2157142399433325078661979618737564774321235951616000000000
My actual question is can someone explain me how plugging these 2 we get to that result? Also what number should be plugged in the "k" variable? It is not mentioned so i don't know if something must be plugged in k to get this result.
thanks everyone for any answer in advance!