How do we prove $\mathbf{E} \left(\frac{1}{X} \right) \geq \frac{1}{\mathbf{E}(X)}$ for random variable $X$?
Can we use Jensen's inequality ?
How do we prove $\mathbf{E} \left(\frac{1}{X} \right) \geq \frac{1}{\mathbf{E}(X)}$ for random variable $X$?
Can we use Jensen's inequality ?
Jensen's Inequality works since $f(x)=\frac1x$ is convex for $x\gt0$. That is, Jensen says $$ E(f(X))\ge f(E(X)) $$ One can also use Cauchy-Schwarz because $$ E\left(\frac1X\right)E(X)\ge E(1)^2 $$