I've recently begun to read Skew Fields: The General Theory of Division Rings by Paul Cohn.
On page 9 he writes,
Let us now pass to the non-commutative case. The absence of zero-divisors is still necessary for a field of fractions to exist, but not sufficient. The first counter-example was found by Malcev [37], who writes down a semigroup whose semigroup ring over $\mathbb{Z}$ is an integral domain but cannot be embedded in a field. Malcev expressed his example as a cancellation semigroup not embeddable in a group, and it promped him to ask for a ring $R$ whose set $R^\times$ of nonzero elements can be embedded in a group, but which cannot itself be embedded in a field.
The cited paper [37] is On the immersion of an algebraic ring in a skew field, Math. Ann 113 (1937), 686-91. (EDIT by M.S: doi: 10.1007/BF01571659, GDZ.)
I've had no luck finding this freely available online, nor at the library. Does anyone have reference to this paper, or at least the part where Malcev demonstrates these two parts of his counter-example? I would greatly appreciate seeing it. Thanks.