I'd like to prove $\lim\limits_{n \rightarrow \infty} \underbrace{\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}_{n\textrm{ square roots}}=2$ using Banach's Fixed Point theorem.
I think I should use the function $f(x)=\sqrt{2+x}$. This way, if I start the iterations for example with $x_0=0$, I will have $x_1=\sqrt2$. When I calculate $x_2$ I will get $\sqrt{2+\sqrt{2}}$. And $x_3 = \sqrt{2+\sqrt{2+\sqrt{2}}}$ and so on. I can see that these iterations are monotone increasing, but how can I show that this converges to 2?
Pseudo-related formula I found: http://en.wikipedia.org/wiki/Vieta_formula
Many thanks in advance!
Following clark's advice, here's my proof this is a contraction. I'm using the interval $D=[0, 2]$.
$f'(x)=\frac{1}{2\sqrt{x+2}}$, which is monotone decreasing. This means its highest value in $D$ is $0$. $f'(0)=\frac{1}{2\sqrt{2}} < 1$. The rate $M$ of the contraction is then $\frac{1}{2\sqrt{2}}$.