I am looking for a sequence $\beta_n\in(0,1)$ such that
(i) $~ \prod_{n\in\mathbb N} \beta_n =0$,
(ii) $~\sum_{n\in\mathbb N} (1-\beta_n)< +\infty$.
Does such a sequence exist?
edit: i have changed to $\beta_n\in(0,1)$ instead of $\beta_n\in[0,1]$.