Let $A \subseteq \Bbb{R}$ be Borel measurable, and $T$ a dense subset of $\Bbb{R}$. Suppose for every $t \in T$ that
$$m((A+t)\setminus A)=0,$$
where $m$ is the Lebesgue measure. Then $m(A)=0$ or $m(\Bbb{R}\setminus A) = 0$.
Proof:
We define $-A$ as $-A=\{-x : x \in A\}$.
Note that for all $t, x \in \Bbb{R}$
$$\chi_{A+t}(x) = \chi_{A}(x-t)=\chi_{-A+x}(t) $$
Note also that, for all $t, x \in \Bbb{R}$,
$$\chi_{(A+t)\setminus A}(x)= \chi_A(x-t) - \chi_A(x-t)\chi_A(x)$$
Note also that, by Lebesgue measure properties, for all $t, x \in \Bbb{R}$,
$$m(A)=m(A+t)=m(-A)=m(-A+x)$$
I will divide the rest of the proof in two parts
Part 1. Let $t\in \Bbb{R}$ and, since $T$ a dense subset of $\Bbb{R}$, let $\{t_n\}_n$ be a sequence such that, for all $n$, $t_n \in T$ and $\{t_n\}_n$ converges to $t$. Then we have that $\chi_A(x-t_n) - \chi_A(x-t_n)\chi_A(x)$ converges pointwise to $\chi_A(x-t) - \chi_A(x-t)\chi_A(x)$.
Since the functions $\chi_A(x-t_n) - \chi_A(x-t_n)\chi_A(x)$ are non-negative, we can apply Fatou's lemma and we get:
\begin{align}
0 \leqslant m((A+t)\setminus A) &= \int \chi_{(A+t)\setminus A}(x) dx = \int (\chi_A(x-t) - \chi_A(x-t)\chi_A(x)) dx = \\ &= \int \liminf_n (\chi_A(x-t_n) - \chi_A(x-t-n)\chi_A(x)) dx \leqslant \\ &\leqslant \liminf_n \int (\chi_A(x-t_n) - \chi_A(x-t-n)\chi_A(x)) dx = \\ &= \liminf_n \: m((A+t_n)\setminus A)=0
\end{align}
So, we proved that, for all $t \in \Bbb{R} $, $m((A+t)\setminus A)=0$.
Part 2: Since, for all $t \in \Bbb{R} $, $m((A+t)\setminus A)=0$, we have, applying Tonnelli's theorem:
\begin{align}
0 &= \int m((A+t)\setminus A) \;dt = \int \int (\chi_A(x-t) - \chi_A(x-t)\chi_A(x)) \;dx \; dt = \\
&= \int \int (\chi_A(x-t) - \chi_A(x-t)\chi_A(x)) \;dt \; dx = \\
&= \int \int (\chi_{-A+x}(t) - \chi_{-A+x}(t)\chi_A(x)) \;dt \; dx = \\
&= \int \int \chi_{-A+x}(t)(1 - \chi_A(x)) \;dt \; dx = \\
&= \int m(-A+x)(1 - \chi_A(x)) \;dx = \\
&= \int m(A)(1 - \chi_A(x)) \;dx = \\
&= m(A)\int ( 1 - \chi_A(x) ) \; dx = m(A)m(\Bbb{R}\setminus A)
\end{align}
So we have that $m(A)=0$ or $m(\Bbb{R}\setminus A) = 0$.