Hint:
Let $u=v^2$ ,
Then $u_x=2vv_x$
$u_y=2vv_y$
$\therefore(2vv_x)^2-(2vv_y)^2=8v^2$ with $v(x,x)=\pm\sqrt{f(x)}$
$4v^2v_x^2-4v^2v_y^2=8v^2$ with $v(x,x)=\pm\sqrt{f(x)}$
$v_x^2-v_y^2=2$ with $v(x,x)=\pm\sqrt{f(x)}$
Let $\begin{cases}p=\dfrac{x+y}{2}\\q=\dfrac{x-y}{2}\end{cases}$ ,
Then $v_x=v_pp_x+v_qq_x=\dfrac{v_p+v_q}{2}$
$v_y=v_pp_y+v_qq_y=\dfrac{v_p-v_q}{2}$
$\therefore\dfrac{(v_p+v_q)^2}{4}-\dfrac{(v_p-v_q)^2}{4}=2$ with $v(p,0)=\pm\sqrt{f(p)}$
$\dfrac{v_p^2+2v_pv_q+v_q^2-v_p^2+2v_pv_q-v_q^2}{4}=2$ with $v(p,0)=\pm\sqrt{f(p)}$
$v_pv_q=2$ with $v(p,0)=\pm\sqrt{f(p)}$
$v_q-\dfrac{2}{v_p}=0$ with $v(p,0)=\pm\sqrt{f(p)}$
$\dfrac{2v_{pp}}{(v_p)^2}+v_{pq}=0$ with $v(p,0)=\pm\sqrt{f(p)}$
Let $w=v_p$ ,
Then $\dfrac{2w_p}{w^2}+w_q=0$ with $w(p,0)=\pm\dfrac{f_p(p)}{2\sqrt{f(p)}}$
Follow the method in http://en.wikipedia.org/wiki/Method_of_characteristics#Example:
$\dfrac{dq}{dt}=1$ , letting $q(0)=0$ , we have $q=t$
$\dfrac{dw}{dt}=0$ , letting $w(0)=w_0$ , we have $w=w_0$
$\dfrac{dp}{dt}=\dfrac{2}{w^2}=\dfrac{2}{w_0^2}$ , letting $p(0)=F(w_0)$ , we have $p=\dfrac{2t}{w_0^2}+F(w_0)=\dfrac{2q}{w^2}+F(w)$ , i.e. $w=G\left(p-\dfrac{2q}{w^2}\right)$
$w(p,0)=\pm\dfrac{f_p(p)}{2\sqrt{f(p)}}$ :
$G(p)=\pm\dfrac{f_p(p)}{2\sqrt{f(p)}}$