12

If I want to solve $$\frac{d}{d\frac{1}{x}} x$$ is my approach correct? As $$\begin{align*} \frac{d}{d\frac{1}{x}}x&=\\ \text{with }\frac{1}{x}&=y\\ \frac{d}{dy}\frac{1}{y}&=-\frac{1}{y^2}\\ &=-\frac{1}{\left(\frac{1}{x}\right)^2}\\ &=-x^2 \end{align*}$$ Is this approach correct, or did I miss something?

arc_lupus
  • 452

2 Answers2

8

$\frac{\mathrm{d} x}{\mathrm{d} \frac{1}{x}}=\left (\frac{\mathrm{d} \frac{1}{x}}{\mathrm{d} x} \right )^{-1}=\left ( \frac{-1}{x^{2}} \right )^{-1}=-x^{2}$

John11
  • 1,569
1

$x=(\frac{1}{x})^{-1}$. Set $y=\frac{1}{x}$ and use ordinary Differentiation rules. Then express $y$ in Terms of $x$.

kryomaxim
  • 2,882