I edited to prove
$$1 -\cos^2 A - \cos^2 B - \cos^2 C-2\cos A\cos B\cos C= 0$$
I believe you need cosine law. Let a, b, c be respective sides of angle A, B, and C, then
$$-cos C = \frac{c^2 - a^2 - b^2}{2ab} $$
$$-cos B = \frac{b^2 - a^2 - c^2}{2ac} $$
$$-cos A = \frac{a^2 - b^2 - c^2}{2bc} $$
so we have
$$cosA cosB cos C = -\frac{(c^2 - a^2 - b^2)(b^2 - a^2 - c^2)(a^2 - b^2 - c^2)}{8(abc)^2}$$
$$1 -cos^2 C - cos^2 A - cos^2 B = -\frac{4(abc)^2 -c^2(c^2 - a^2 - b^2)^2 - b^2(b^2 - a^2 - c^2)^2 - a^2(a^2 - b^2 - c^2)^2}{4(abc)^2}$$
To provde original identity, we just need to prove:
$$4(abc)^2 -c^2(c^2 - a^2 - b^2)^2 - b^2(b^2 - a^2 - c^2)^2 - a^2(a^2 - b^2 - c^2)^2 = -(c^2 - a^2 - b^2)(b^2 - a^2 - c^2)(a^2 - b^2 - c^2)$$
Expand both side should verify the identity (From Wolfram, identity holds)