Find:
$$\lim_{n \rightarrow \infty} \int_0^n \left(1+ \frac{x}{n}\right)^{n+1} \exp(-2x) \, dx$$
The sequence $\left(1+ \frac{x}{n}\right)^{n+1} \exp{(-2x)}$ converges pointwise to $\exp{(-x)}$. So if we could apply Lebesgue's monotone convergence theorem, we have:
\begin{align} \lim_{n \rightarrow \infty} \int_0^n \left(1+ \frac{x}{n}\right)^{n+1} \exp(-2x) \, dx &=\lim_{n \rightarrow \infty} \int_{\mathbb{R}} I_{(0,n)(x)} \left(1+ \frac{x}{n}\right)^{n+1} \exp(-2x) \, dx \\[10pt] &= {} \int_{- \infty}^\infty \exp(-x) \, dx= +\infty \end{align}
Can someone help me to prove that the sequence of integrands is monotone?