For $n\in \Bbb{N}$, $$\int_0^{\pi/2} (\log \sin x)^n\text{ d}x=\frac{1}{2^{n+1}}B^{(n)}\left(\frac{1}{2},\frac{1}{2}\right)$$
Can we extend that result a bit further, to $n\in \Bbb{Q},n\gt 1?$
For $n\in \Bbb{N}$, $$\int_0^{\pi/2} (\log \sin x)^n\text{ d}x=\frac{1}{2^{n+1}}B^{(n)}\left(\frac{1}{2},\frac{1}{2}\right)$$
Can we extend that result a bit further, to $n\in \Bbb{Q},n\gt 1?$
Use the change of variables $t= \sin(x) $ to get $$ I = \int_0^1 \frac{\ln^n t} {\sqrt{1- t^2}} dt$$ Then make another change of variables $t^2=u$ and simplify . Then see my answer to finish the problem.