Abbreviate: $D =$ a person is diseased, $+ =$ the test is positive.
Assume: $\Pr(D) = 0.001, \; \Pr(+|D)=0.99, \; \Pr(+|D^C) = 0.01 \qquad ($$\iff$ $ \Pr(-|D^C) = 0.99).$
1. Use Bayes's Theorem: $\Pr(D|+) = 0.0 \; 90 \; 1639... \quad $ (confirmed; scroll down 30% hereof).
2. Quantify the above probabilities for 1000 people (per 1 and 2)
(Table herefrom. Green indicates True results, red False results).
$$\begin{array}{r|cc|c} &D &\lnot D &\text{Total}\\ \hline +&\color{green}{\Pr(D)\Pr(+|D)}&\color{red}{\Pr(D^C)\Pr(+|D^C)}&\text{add the 2 left entries}\\ - &\color{red}{\Pr(D)\Pr(-|D)}&\color{green}{\Pr(D^C)\Pr(-|D^C)}&\color{black}{\text{add the 2 left entries}}\\ \hline \text{Total}&\color{black}{1}&\color{black}{999}&\color{black}{1000} \end{array}$$
$$\begin{array}{r|cc|c} &D &\lnot D &\text{Total}\\ \hline +&\color{green}{1}&\color{red}{9.99}&10.99\\ - &\color{red}{\text{impertinent}}&\color{green}{\text{impertinent}}&\color{black}{\text{impertinent}}\\ \hline \text{Total}&\color{black}{1}&\color{black}{999}&\color{black}{1000} \end{array}$$
$3.$ So $\Pr(D|+) = \dfrac{ \color{green}{1} }{ 10.99 } = 0.0 \; 90 \; 9918... \quad $
Why do 1 and 3 differ starting at the ten-thousandth digit?