I have to show that sequences $\left(\frac{x^{2k+1}}{(2k+1)!}\right)$ where $x\in(0,1)$ and $\left(-\frac{x^{2k+1}}{(2k+1)!}\right)$ where $x\in(-1,0)$ decrease monotonically and converge to $0$.
I know that if $x\in(0,1)$ then the sequnce $(x^n)$ converges to $0$ but in this case I have the $(2k+1)!$