Find $\text{gcd}(2^{21}-1,2^{27}-1).$
My proof: We know that $2^{21}-1=(2^3)^7-1=8^7-1=(8-1)(8^6+\dots+8+1)=7(8^6+\dots+8+1)=7N_1$ and $2^{27}-1=(2^3)^9-1=8^9-1=(8-1)(8^8+\dots+8+1)=7(8^8+\dots+8+1)=7N_2.$ Also $N_2-N_1=8^8+8^7$. Hence $$\text{gcd}(2^{21}-1,2^{27}-1)=\text{gcd}(7N_1,7N_2)=7\text{gcd}(N_1,N_2).$$
I guess that $\text{gcd}(N_1,N_2)=1$ but I can't prove rigorously. Can anyone show a full proof?