Show that $$\int\limits_0^\infty\frac{1}{t}(\cos(at)-\cos(bt))dt=\ln(b/a),\,a,b>0.$$
Thanks to wikipedia I know that
$$\int\limits_0^\infty\frac{1}{t}(\cos(at)-\cos(bt))\,dt \overset{?}{=}\int\limits_{0}^\infty\left[\frac{p}{p^2+a^2}-\frac{p}{p^2+b^2}\right]=\left.\frac{1}{2}\ln\left[\frac{p^2+a^2}{p^2+b^2}\right]\right|_{0}^\infty=\ln b-\ln a.$$ I am having a hard time understanding the jump between the equality with the question mark above it.