13

How to prove this series result:

$$\sum_{n=1}^{\infty }\frac{F_{n}}{2^{n}}=2$$

where $F_{1}=1,~F_{2}=1,~F_n=F_{n-1}+F_{n-2},~~n\geq 3$.

I have no idea where to start.

Olivier Oloa
  • 120,989
Renascence_5.
  • 5,281
  • 1
  • 27
  • 69
  • http://math.stackexchange.com/questions/137063/prove-that-sum-limits-n-0-infty-fracf-n2n-sum-limits-n-0-i –  Jan 31 '16 at 18:19
  • 1
    See also http://math.stackexchange.com/questions/114800/infinite-series-fibonacci-2n and http://math.stackexchange.com/questions/88529/how-to-prove-the-fibonacci-sum-sum-limits-n-0-infty-fracf-npn-fr – Martin Sleziak Feb 15 '16 at 16:59

1 Answers1

17

Hint. You may use the fact that, if

$$f(x)=\sum_{n=0}^\infty F_nx^n \tag1$$

with $F_n$ the nth Fibonnacci number, $F_{n+2}=F_{n}+F_{n+1}$, then

$$f(x)={x\over 1-x-x^2}.\tag2$$

A proof of $(2)$ may be found here. Apply it to $x:=\dfrac12$.

Olivier Oloa
  • 120,989