I'm trying to evaluate the following nested summation as a function of $n$:
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^n \sum_{k=1}^j 1$$
So far I have: $$\sum_{i=1}^{n-1}\sum_{j=i+1}^n i+1$$ $$\sum_{i=1}^{n-1} \left(\sum_{j=i+1}^n i+\sum_{j=i+1}^n 1 \right)$$ This is where I've gotten stuck. I feel that I may be solving this incorrectly:
$$\sum_{i=1}^{n-1} \left(\frac{n(n+1)}{2} + n\right)$$ $$\sum_{i=1}^{n-1} \left(\frac{1}{2}(n^2+n) + n\right)$$ $$\frac{1}{2} \left(\sum_{i=1}^{n-1}n^2+\sum_{i=1}^{n-1}n\right) + \sum_{i=1}^{n-1}n$$
Any and all help is appreciated!