Prove that finite separable normal extension $\mathbb{F}$ of field $\mathbb{k}$, $\operatorname{char}(\mathbb{k})=p > 0$ has Galois abelian group $\operatorname{Gal}(\mathbb{F}/\mathbb{k})$ with period p if and only if $\mathbb{F} = \mathbb{k}(\alpha_1, \dots, \alpha_n)$, $\alpha_i^p - \alpha_i - a_i = 0$, $a_i \in \mathbb{k}^*$.
I have just started learning Galois theory, any advice will be highly appreciated. Thanks in advance.