Find value of $$\prod^{n}_{r=1}\sin \left(\frac{\left(2r-1\right)\pi}{2n}\right)$$ Where $n\in \mathbb{N}$ and $n>1$
$\bf{My\; Try::}$ Let $$P = \sin \left(\frac{\pi}{2n}\right)\cdot \sin \left(\frac{3\pi}{2n}\right)\cdot \sin \left(\frac{5\pi}{2n}\right)\cdot \cdot \cdot \cdot \cdot \sin\left(\frac{n\pi}{2n}\right)\cdot\cdot \cdot \cdot \cdot \sin\left(\frac{(2n-1)\pi}{2n}\right)$$
Now we can write $\displaystyle \sin\left(\frac{(2n-1)\pi}{2n}\right)=\sin \left(\frac{\pi}{n}\right)$ Similarly $\displaystyle \sin\left(\frac{(2n-3)\pi}{2n}\right)=\sin \left(\frac{3\pi}{2n}\right)$
So we get $$P = \left[\sin \left(\frac{\pi}{2n}\right)\cdot \sin \left(\frac{3\pi}{2n}\right)\cdot \sin \left(\frac{5\pi}{2n}\right)\cdot \cdot \cdot \cdot \cdot \sin\left(\frac{(n-2)\pi}{2n}\right)\right]^2$$
Now How can i Solve after that, Help me
Thanks