Given any convergent series $(a_n)_{n \in \mathbb{N}}$,consider a new sequence $(b_n)_{n \in \mathbb{N}}$, defined as $$b_n = \frac{1}{n}(a_1 + a_2 + \dots+a_n)=\frac{1}{n}\sum_{k=1}^na_k $$ for every $n \in \mathbb{N}$ ($b_n$ is the arithmetic mean of the first $n$ elements in $a_n$).
How do I proof that $(b_n)_{n \in \mathbb{N}}$ is convergent with the same limit?
I have tried using the fact that $b_n \leqslant \text{sup}\{a_m\vert m \geqslant n\}$ and $b_n \geqslant \text{inf}\{a_m\vert m \geqslant n\}$, and subsequently taking limits and using that $L= \text{limsup}_{n \to \infty}a_n =\text{liminf}_{n \to \infty}a_n$. Is this sound?