I have the basic idea of how to work out the integral of a trig function, but am having trouble in applying the concept. Would really appreciate it if someone could help me. Thanks!
-
1$$\cos2A=2\cos^2A-1$$ – lab bhattacharjee Jan 27 '16 at 07:17
-
@labbhattacharjee Shouldn't this be an answer, rather than a comment? – 5xum Jan 27 '16 at 07:27
-
@HansLundmark Didn't understand that. Sorry! – Krunal Rindani Jan 27 '16 at 07:32
-
See also: http://math.stackexchange.com/questions/1827183/how-to-integrate-cos2x – Martin Sleziak Jun 17 '16 at 04:19
-
See also: How to evaluate $\int \cos^2x \ dx$ – Martin Sleziak Jul 09 '17 at 08:54
1 Answers
$\int 4 \cos^2(x) dx$
$\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx$
$=4\int\cos^2(x) dx$
$\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)=\frac{1+\cos \left(2x\right)}{2}$
$=4\int \frac{1+\cos \left(2x\right)}{2}dx$
$\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx$
$=4\frac{1}{2}\int \:1+\cos \left(2x\right)dx$
$\mathrm{Apply\:Integral\:Substitution:}\:\int > f\left(g\left(x\right)\right)\cdot g^{'}\left(x\right)dx=\int > f\left(u\right)du,\:\quad u=g\left(x\right)$
$\mathrm{Substitute:}\:u=2x$
$\frac{du}{dx}=2$
$\quad \Rightarrow \:du=2dx$
$\Rightarrow \:dx=\frac{1}{2}du$
$=\int \left(1+\cos \left(u\right)\right)\frac{1}{2}du$
$=4\frac{1}{2}\int \left(1+\cos \left(u\right)\right)\frac{1}{2}du$
$\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx$
$=4\frac{1}{2}\frac{1}{2}\int \:1+\cos \left(u\right)du$
$\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx$
$=4\frac{1}{2}\frac{1}{2}\left(\int \:1du+\int \cos \left(u\right)du\right)$
$=4\frac{1}{2}\frac{1}{2}\left(u+\sin \left(u\right)\right)$
$\mathrm{Substitute\:back}\:u=2x$
$=4\frac{1}{2}\frac{1}{2}\left(2x+\sin \left(2x\right)\right)$
$\mathrm{Simplify}$
$=2x+\sin \left(2x\right)$
$Add\:a\:constant\:to\:the\:solution$
$=2x+\sin \left(2x\right)+C$

- 22,768

- 4,787
-
1Mithilesh, I can't thank you enough for such answer. I hope you have a good day. Your answer helped me a lot more than you'd think. Thanks again. – Krunal Rindani Jan 27 '16 at 11:02
-