Conjecture:
Given a finite group $G$ and a subset $A\subset G$. Then $\{A,A^2,A^3,\dots\}$ is a group iff $\forall n\in \mathbb N: |A^n|=|A^{n+1}|$.
Given that the composition between the subsets $A,B\subset G$ is $A\cdot B=\{g\in G|\exists a\in A\exists b\in B:g=a\cdot b\}$.
Example: suppose that $N\subset G$ is a normal subgroup, then the cosets $\{Ng,Ng^2,...\}$ have the same cardinality and constitutes a group, while for random sets the cardinality seems to grow when multiplying:
{ 3412 2143 4321 1234 } { 2143 1234 } nswap pnormal . -1 ok
{ 3412 2143 4321 1234 } { 2143 1234 } pquotient set. {{3412,4321},{2143,1234}} ok
{ 4321 3412 } go ok
gen. {4321,3412} ok
gen. {2143,1234} ok
gen. {4321,3412} ok
ndrop ok
{ 2431 2341 } go ok
gen. {2431,2341} ok
gen. {4132,3142,4312,3412} ok
gen. {1234,1243,3214,4213,1324,1423,3124,4123} ok
gen. {2413,2314,3421,4321,1423,1324,2341,2431,2143,2134,3241,4231,1243,1234} ok
gen. {4123,3124,4321,3421,2143,2134,4132,3142,4213,3214,4231,3241,3412,4312,1432,1342,2413,2314,2431,2341} ok
gen. {4231,3241,1234,1243,3214,4213,1432,1342,1324,1423,2134,2143,2314,2413,4123,3124,4321,3421,4132,3142,4312,3412} ok
gen. {3412,4312,2314,2413,2341,2431,2143,2134,4321,3421,3241,4231,1342,1432,3142,4132,1234,1243,3214,4213,1324,1423,3124,4123} ok
gen. {4123,3124,3142,4132,3412,4312,1432,1342,3214,4213,2413,2314,3421,4321,1423,1324,2341,2431,2143,2134,3241,4231,1243,1234} ok
ndrop ok