This question is not a duplicate because I am asked here to use the fact that $1 + \cos \alpha + \cos 2 \alpha + \cdots + \cos n \alpha = Re (1 + z + z^{2} + \cdots + z^{n})$, where the question this is suspected of being a duplicate of does not use this
I am supposed to use the fact that $1 + \cos \alpha + \cos 2 \alpha + \cdots + \cos n \alpha = Re (1 + z + z^{2} + \cdots + z^{n})$, where $z = \cos \alpha + i \sin \alpha$, ro find a trigonometric expression for $1 + \cos \alpha + \cos 2 \alpha + \cdots + \cos n \alpha$.
Now, when $z \neq 1$, we have the geometric sum $\displaystyle 1 + z + z^{2} + \cdots + z^{n} = \frac{1-z^{n+1}}{1-z}$. (When $z = 1$, $1 + z + z^{2} + \cdots + z^{n} = n + 1$, so $Re(1 + z + z^{2} + \cdots + z^{n}) = Re(n+1) = n+1$, finished.)
So, in the case where $z \neq 1$, $\displaystyle 1 + \cos \alpha + \cos 2 \alpha + \cdots + \cos n \alpha = Re(1 + z + z^{2} + \cdots + z^{n}) = Re\left(\frac{1-z^{n+1}}{1-z} \right) = Re \left(\frac{1-(\cos \alpha + i \sin \alpha)^{n+1}}{1-(\cos \alpha + i \sin \alpha)} \right) = Re \left[ \left(\frac{1-(\cos \alpha + i \sin \alpha)^{n+1}}{(1-\cos \alpha) - i \sin \alpha} \right)\cdot \frac{(1-\cos \alpha) + i \sin \alpha}{(1 - \cos \alpha)+ i \sin \alpha}\right] = Re \left( \frac{(1-\cos \alpha)+i\sin \alpha - ( 1- \cos \alpha)(\cos \alpha + i \sin \alpha)^{n+1}-i \sin \alpha (\cos \alpha + i \sin \alpha)^{n+1}}{(1-\cos \alpha)^{2} + \sin^{2} \alpha}\right)$.
Then, to make a long story short, after an application of De Moivre's Theorem to turn the $(\cos \alpha + i \sin \alpha)^{n+1}$'s into $(\cos(n \alpha + \alpha)+ i \sin (n \alpha + \alpha))$'s, usage of the sine and cosine of sum identities, collecting of like terms and cancelling some things, we obtain
$\displaystyle Re \left(\frac{1-(\cos \alpha + i \sin \alpha)^{n+1}}{1-(\cos \alpha + i \sin \alpha)} \right) = Re \left(\frac{(1-\cos \alpha + \cos (n\alpha)) + i(\sin \alpha - \cos (n\alpha)\sin \alpha + \sin (n \alpha))}{2-2\cos \alpha} \right) = \frac{1-\cos \alpha + \cos (n \alpha)}{2-2\cos \alpha}$.
At least I think it does.
Which brings me to my question: is this correct? If not, where did I go wrong and how do I fix it?