Let us elaborate on @Arthur idea by regrouping the terms five by five.
$$S=\sum_{k=0}^\infty \left(\frac{1}{2k+1}-\frac{1}{8k+2}-\frac{1}{8k+4}-\frac{1}{8k+6}-\frac{1}{8k+8}\right)$$
Rewriting $\frac{1}{2k+1}=\frac{4}{4(2k+1)}=\frac{4}{8k+4}$ simplifies the sum to four terms
$$S=\sum_{k=0}^\infty \left(-\frac{1}{8k+2}+\frac{3}{8k+4}-\frac{1}{8k+6}-\frac{1}{8k+8}\right)$$
that have all even denominator, so
$$S=-\frac{1}{2}\sum_{k=0}^\infty \left(\frac{1}{4k+1}-\frac{3}{4k+2}+\frac{1}{4k+3}+\frac{1}{4k+4}\right)$$
The relation
$$\int_0^1 x^ndx=\frac{1}{n+1}
$$
changes the fractions into integrals
$$S=-\frac{1}{2}\sum_{k=0}^\infty \int_0^1 \left(x^{4k}-3x^{4k+1}+x^{4k+2}+x^{4k+3}\right)dx$$
Now we may interchange the order of summation and integration and use the sum of the geometric progression
$$\sum_{k=0}^\infty cx^{ak+b} = \frac{cx^b}{1-x^a}$$
to obtain
$$\begin{align}
-2S&=\int_0^1 \sum_{k=0}^\infty \left(x^{4k}-3x^{4k+1}+x^{4k+2}+x^{4k+3}\right)dx\\
&=\int_0^1 \frac {1-3x+x^2+x^3}{1-x^4} dx \\
&=\int_0^1 \frac {1-2x-x^2}{(1+x)(1+x^2)} dx \\
&=\int_0^1 \left( \frac{1}{1+x}-\frac{2x}{1+x^2}\right)dx\\
&=\left(\log(2)-\log(2)\right)=0\\
\end{align}$$
as in showing $ 1-\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{3}{6}+\frac{1}{7}+\frac{1}{8}+\cdots=0 $.
The procedure here is very similar to one of the four proofs Jack D'Aurizio gives to this question, which includes the one here.
$$\ln (2)+\frac{1}{2}\ln \left(\frac{n}{m}\right)$$
Where, $n=1$ and $m=4$ for your rearrangement and $n$ and $m$ correspond to the length of the positive/negative term lengths.
Unfortunately, I do not remember how it was proved.
– GPhys Jan 25 '16 at 11:59The general solution is simpler: $$log\left(\frac{n}{m}\right)$$ if we rearrange the cancelling harmonic series
$$0=log(1)=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...$$
instead of the alternating harmonic series (http://math.stackexchange.com/a/1602987/134791)
– Jaume Oliver Lafont Jan 27 '16 at 21:29