Let $\{x_n\}_{n=1}^\infty$ and $\{y_n\}_{n=1}^\infty$ be sequences of real numbers. Verify that each of the following holds, provided the right-hand side makes sense. $$\limsup(x_n+y_n)\geq\limsup(x_n)+\liminf(y_n)$$
For this problem we are allowed to assume the following holds: $$\limsup(x_n+y_n)\leq\limsup(x_n)+\limsup(y_n)$$ $$\limsup(-x_n)=-\liminf(x_n)\text{ and } \liminf(-x_n)=-\limsup(x_n)$$
What I've done so far:
See that \begin{equation} \begin{split} \limsup(x_n)=\limsup(x_n+y_n-y_n) & \leq\limsup(x_n+y_n)+\limsup(-y_n) \\ & = \limsup(x_n+y_n) -\liminf(y_n) \end{split} \end{equation}
So we obtain $$\limsup(x_n+y_n)\geq\limsup(x_n)+\liminf(y_n)\text{ as desired.}$$
I feel like this should hold, but I'm curious if this approach covers all potential exceptions. What if we are talking about the extended real numbers? What if $\{y_n\}$ or $\{x_n\}$ diverge?