0

Let $G$ be a group and $g \in G-\{1_G\}$.

Prove $o(u^{-1})=o(u)$ for all $u \in G$ and $o(uh)=o(hu)$ for all $u,h \in G$.

Let $n=o(u)$. Then $u^n=1$ and so 1$=u^nu^{-n}=u^{-n}=(u^{-1})^n$ so $o(u^{-1})|n$. How do I show $n|o(u^{-1})$?

For the second bit I am not sure.

Jones
  • 1
  • 1
  • 2

1 Answers1

1

$\textbf{Claim}$: $\quad o(u) = o(u^{-1})$ for all $u \in G$.

$\textbf{Proof}$:

Let $u \in G$.

Let $n = o(u)$ and $m = o(u^{-1})$.

Then $1 = 11 = u^n (u^{-1})^m$.

If $n>m$, then $1 = u^{n-m}$, which cannot be since $o(u) = n$.

If $n<m$, then $1 = (u^{-1})^{m-n}$, which cannot be since $o(u^{-1}) = m$.

So it can be concluded that $n = m$.

$\textbf{Claim}$: $\quad o(uh) = o(hu)$ for all $u,h = G$.

$\textbf{Proof}$:

Let $u,h \in G$.

Let $n = o(uh)$ and $m = o(hu)$.

Then $hu = h(uh)^nu = (hu)^nhu \Rightarrow (hu)^n = 1$. So $m|n$.

Similarly, $uh = u(hu)^mh = (uh)^muh \Rightarrow (uh)^m= 1$. So $n|m$.

Therefore $n = m$.