$\textbf{Claim}$: $\quad o(u) = o(u^{-1})$ for all $u \in G$.
$\textbf{Proof}$:
Let $u \in G$.
Let $n = o(u)$ and $m = o(u^{-1})$.
Then $1 = 11 = u^n (u^{-1})^m$.
If $n>m$, then $1 = u^{n-m}$, which cannot be since $o(u) = n$.
If $n<m$, then $1 = (u^{-1})^{m-n}$, which cannot be since $o(u^{-1}) = m$.
So it can be concluded that $n = m$.
$\textbf{Claim}$: $\quad o(uh) = o(hu)$ for all $u,h = G$.
$\textbf{Proof}$:
Let $u,h \in G$.
Let $n = o(uh)$ and $m = o(hu)$.
Then $hu = h(uh)^nu = (hu)^nhu \Rightarrow (hu)^n = 1$. So $m|n$.
Similarly, $uh = u(hu)^mh = (uh)^muh \Rightarrow (uh)^m= 1$. So $n|m$.
Therefore $n = m$.