:$$ L= \lim_{x \to 1} \frac {x-1}{\log_e x} $$
Let $ x = h + 1, h = x - 1. $ as $ x \to 1, h \to 0$
$$L = \lim_{h \to 0} \frac{h} {\log_e (h+1)}$$
here we have a formula $$ \lim_{x \to 0} \frac{\log(1+x)}{x} = 1 $$ can i use it here!?
:$$ L= \lim_{x \to 1} \frac {x-1}{\log_e x} $$
Let $ x = h + 1, h = x - 1. $ as $ x \to 1, h \to 0$
$$L = \lim_{h \to 0} \frac{h} {\log_e (h+1)}$$
here we have a formula $$ \lim_{x \to 0} \frac{\log(1+x)}{x} = 1 $$ can i use it here!?
Its just $$\frac{1}{\frac{log_e(1+h)}{h}}=\frac{1}{1}=1$$
Yes, you can use $\lim_{x\to 0}\frac{\log(1+x)}{x}=1$ by taking inverse as follows $$\lim_{h\to 0}\frac{h}{\log(h+1)}=\lim_{h\to 0}\left(\frac{\log(1+h)}{h}\right)^{-1}=\left(\lim_{h\to 0}\frac{\log(1+h)}{h}\right)^{-1}=(1)^{-1}=\color{red}{1}$$
I thought it might be instructive to present another way forward.
In THIS ANSWER and THIS ONE I showed, without the use of calculus, that the logarithm function satisfies the inequalities
$$\frac{x-1}{x}\le \log(x)\le x-1$$
for $x>0$. Therefore, we can write for $x>1$
$$1 \le \frac{x-1}{\log(x)}\le x$$
and for $0<x<1$
$$x \le \frac{x-1}{\log(x)}\le 1$$
whereupon applying the squeeze theorem yields the result $1$.