2

Can anyone help me with this limit problem without L'Hopital rule and Taylor series? $$\lim_{x\rightarrow\ -\infty}\left(-2\frac{\arctan(x)}{\pi}\right)^x$$

josf
  • 1,317
  • use the exponential function to write it down and then find out what happens in the argument of $exp$ – user159517 Jan 22 '16 at 17:13
  • Wolfram Alpha says the limit is $e^{2/\pi}$. – Wojowu Jan 22 '16 at 17:14
  • Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level. – Elias Costa Jan 22 '16 at 23:37
  • Set $$1+\dfrac{2\arctan x}\pi=u\implies u\to0$$ – lab bhattacharjee Jan 23 '16 at 05:02

4 Answers4

2

Let $y=\arctan x$, so your limit is as $y\to-\pi/2$, and the exponent is $\tan y$.
Let $z=y+\pi/2$, so your limit is as $z\to0^+$.
Use the fact that $(1-w)^{-w}\to e$ as $w\to 0$

Empy2
  • 50,853
1

For $x<0$, we have $$ \arctan x+\arctan\frac{1}{x}=-\frac{\pi}{2} $$ so $$ -\frac{2}{\pi}\arctan x=1+\frac{2}{\pi}\arctan\frac{1}{x} $$ Now, set $t=1/x$ and your limit becomes $$ \lim_{t\to0^-}\left(1+\frac{2}{\pi}\arctan t\right)^{1/t} $$ and here you can first compute the limit of the logarithm: $$ \lim_{t\to0^-}\frac{\log(1+\frac{2}{\pi}\arctan t)}{t} $$ which is the derivative at $0$ of $f(t)=\log(1+\frac{2}{\pi}\arctan t)$; since $$ f'(t)=\frac{1}{1+\frac{2}{\pi}\arctan t}\frac{2}{\pi}\frac{1}{1+t^2} $$ we have $$ f'(0)=\frac{2}{\pi} $$ So your limit is $$ e^{2/\pi} $$

egreg
  • 238,574
0

We can find the limit of $\lim_{x\to -\infty} \ln \left(\frac{-2\arctan x }{\pi}\right)^x=\lim_{x\to -\infty} x\ln \left(\frac{-2\arctan x }{\pi}\right)=\lim_{x \to -\infty} \frac {\ln \left(\frac{-2\arctan x }{\pi}\right)}{1/x}$.

It is well known that $\lim_ \limits{x \to -\infty} \arctan x=\frac{-\pi}{2}.$

Using this fact, we now have an indeterminate limit, so we apply L'Hopital's rule. $\lim_{x \to -\infty} \frac {\ln \left(\frac{-2\arctan x }{\pi}\right)}{1/x}= \lim_{x \to -\infty}\frac{\frac{1}{ \arctan x (1+x^2)}}{-1/x^2}.$

Rearranging the fraction gives us $\lim_{x \to -\infty}{\frac{-x^2}{ \arctan (x) (1+x^2)}}.$ Dividing both the numerator and denominator by $x^2$ gives:

$$\lim_{x \to -\infty} \frac{-1}{\arctan(x)(1/x^2+1)}.$$ Now, the limit can be safely be evaluated as $\frac{2}{\pi}.$

However, remember that we started by taking the natural logarithm of the initial limit. Thus, we must exponentiate with a base of $e$. Thus:

$$\lim_ \limits{x\to -\infty} \left(\frac{-2\arctan x }{\pi}\right)^x=e^{2/\pi}$$

zz20s
  • 6,712
0

I thought it might be instructive to see an approach that does not rely on differential calculus, but rather standard inequalities and the squeeze theorem.

I showed in THIS ANSWER and THIS ONE , using only (1) the limit definition for the exponential function and (2) Bernouli's Inequality that the logarithm function satisfies the inequalities

$$\bbox[5px,border:2px solid #C0A000]{\frac{x}{1+x}\le \log(1+x)\le x} \tag 1$$

for $x>-1$.


Next, recall from basic geometry that the sine function and cosine functions satisfy the inequalities

$$x\le \sin (x)\le x\cos(x) \tag 2$$

for $-\pi/2 \le x\le 0$. It is straightforward to show from $(2)$ that the arctangent function satisfies the inequlities

$$\bbox[5px,border:2px solid #C0A000]{\frac1x\le \arctan(1/x)\le -\frac{1}{\sqrt{1+x^2}}} \tag 3$$

for $x<0$.

We will use the inequalities in $(1)$ and $(3)$ in the ensuing analysis.


To begin, we write for $x<0$

$$\begin{align} \left(-\frac2\pi \arctan(x)\right)^x&=\exp\left(x\log\left(-\frac2\pi \arctan(x)\right)\right)\\\\ &=\exp\left(x\log\left(1+\frac2\pi \arctan(1/x)\right)\right)\tag 4 \end{align}$$

Let's bound the argument of the exponential function on the right-hand side of $(4)$ using $(1)$ and $(3)$. The upper bound provided by $(1)$ and $(3)$ reveals

$$\begin{align} x\log\left(1+\frac2\pi \arctan(1/x)\right)&\le x\left(\frac2\pi \arctan(1/x)\right)\\\\ &\le- \frac2\pi \frac{x}{\sqrt{x^2+1}} \tag 5 \end{align}$$

while the lower bound provide by $(1)$ and $(3)$ reveals

$$\begin{align} x\log\left(1+\frac2\pi \arctan(1/x)\right)&\ge x\left(\frac2\pi \frac{\arctan(1/x)}{1+\arctan(1/x)}\right)\\\\ & \ge \frac2\pi \frac{\sqrt{1+x^2}}{1+\sqrt{1+x^2}} \tag 6 \end{align}$$

Putting $(5)$ and $(6)$ together yields

$$\frac2\pi \frac{\sqrt{1+x^2}}{1+\sqrt{1+x^2}}\le x\log\left(1+\frac2\pi \arctan(1/x)\right)\le -\frac2\pi \frac{x}{\sqrt{x^2+1}}$$

whereupon applying the squeeze theorem, we obtain the limit

$$\lim_{x\to -\infty}x\log\left(1+\frac2\pi \arctan(1/x)\right)=\frac2\pi$$

Finally, using continuity of the exponential function, we have

$$\bbox[5px,border:2px solid #C0A000]{\lim_{x\to -\infty}\left(-\frac2\pi \arctan(x)\right)^x=e^{2/\pi}}$$

Mark Viola
  • 179,405