By way of an intermittent progress report I submit several integral
representations of the sum
$$\sum_{k=0}^n {n\choose k}^2 \times
\sum_{j=0}^{2k-n} {k\choose j}.$$
They were obtained using the Egorychev method.
The reader is cordially invited to comment, verify and prove these.
Saddle point asymptotics could be attempted if these were univariate
integrals. I present them in the hope that perhaps a univariate
generating function can be found where the catalog of asymptotics of
coefficient extractor integrals could be applied. Sometimes there
exist substitutions which produce radical cancellation /
simplification in these binomial sum integrals.
First representation:
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n}}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{1-w} \frac{1}{w^{n+1}}
(1 + w + w^2 z)^n
\; dw\; dz.$$
Second representation:
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}} (1+2z)^n (1+z)^n
\; dz
\\ +
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n}}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{2w-1} \frac{1}{(1-w)^{n+1}}
\frac{1}{w^n}
((1-w)^2 z + w)^n
\; dw\; dz.$$
Third representation:
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n}}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{n+1}}\frac{(1+w)^n}{1-w}
\frac{1}{z-w/(1-w)}
((1+z)^2 w^2 + z)^n
\; dw\; dz.$$
Fourth representation:
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{n+1}}
\frac{1}{1-w}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}}
(1 + z + wz)^n
(1 + w^2 z)^n
\; dz\; dw.$$
Fifth representation:
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{n+1}} \frac{1}{1-w}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}}
\frac{1}{(1-z)^{n+1}}
(1 + w - wz)^n
(z + w^2 - w^2 z)^n
\; dz\; dw $$
Sixth representation:
$$\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{n+1}}
\frac{1}{1-w}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}}
(w+1-z)^n
\; dz\; dw
\\ - \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{2n}}
\frac{1}{1-w}
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1}} \frac{1}{(1-z)^{n+1}}
(w+1-z)^n (1-z + w^2 z)^n
\; dz\; dw .$$