Here's problem $6$ in Chapter $1$ in the book Principles of Mathematical Analysis by Walter Rudin, $3$rd edition:
Fix a real number $b$, such that $b > 1$.
$(a)$ If $m, n, p, q$ are integers, $n > 0$, $q > 0$, and $r = m/n = p/q$, then (I've managed to show that)
$$\left( b^m \right)^{1/n} = \left( b^p \right)^{1/q}.$$
Hence it makes sense to define
$$b^r \colon= \left(b^m\right)^{1/n}.$$
$(b)$ (I've also managed to show that) for any rational numbers $r, s$, we have $$b^{r+s} = b^r b^s.$$
$(c)$ For any real number $x$, define the set $B(x)$ as follows:
$$B(x) \colon= \left\{ \ b^t \ \colon \ t \ \mbox{ is rational}, \ t \leq x \ \right\}.$$
We can then prove that
$$b^r = \sup B(r)$$
when $r$ is a rational number.
Hence it makes sense to define
$$b^x \colon= \sup B(x) = \sup \left\{ \ b^t \ \colon \ t \ \mbox{ is rational}, \ t \leq x \ \right\}$$ for every real number $x$.
$(d)$ How to prove (USING THE MACHINERY DEVELOPED HERE) that $$b^{x+y} = b^x b^y$$ for all real numbers $x$ and $y$?
I've already posted this question. Here's the link. However, none of the answers there seems to work for me.
My Work
Let $X, Y$ be any two non-empty subsets of $\mathbb{R}$. Then we have the following facts:
$(1)$ If $X \subset Y$ and if $Y$ is bounded above in $\mathbb{R}$, then so is $X$ and we have the inequality $$\sup X \leq \sup Y.$$
$(2)$ If $X, Y$ are non-empty subsets of the set of non-negative real numbers and if both $X$ and $Y$ are bounded above, then so is the set
$$\{ \ xy \ \colon \ x \in X, \ y \in Y \ \};$$ moreover, we have the identity
$$\sup \{ \ xy \ \colon \ x \in X, \ y \in Y \ \} = \sup X \cdot \sup Y.$$
Thus,
$$\begin{align} b^x b^y &= \sup B(x) \sup B(y) \\ &= \sup \{ \ b^r \ \colon \ r \in \mathbb{Q}, r \leq x \ \} \sup \{ \ b^s \ \colon \ s \in \mathbb{Q}, s \leq y \ \} \\ &= \sup \{ \ b^{r+s} \ \colon \ r \in \mathbb{Q}, \ s \in \mathbb{Q}, \ r \leq x, \ s \leq y \ \}. \end{align}$$
But if $r \in \mathbb{Q}$, $s \in \mathbb{Q}$, $r \leq x$, and $s \leq y$, then the sum $r+s \in \mathbb{Q}$ and $r + s \leq x + y$ also. So
$$ \{ \ b^{r+s} \ \colon \ r \in \mathbb{Q}, \ s \in \mathbb{Q}, \ r \leq x, \ s \leq y \ \} \subseteq \{ \ b^t \ \colon \ t \in \mathbb{Q}, \ t \leq x+y \ \}.$$ Therefore,
$$\begin{align} b^x b^y &= \sup \{ \ b^{r+s} \ \colon \ r \in \mathbb{Q}, \ s \in \mathbb{Q}, \ r \leq x, \ s \leq y \ \} \\ &\leq \sup \{ \ b^t \ \colon \ t \in \mathbb{Q}, \ t \leq x+y \ \} \\ &= \sup B(x+y) = b^{x+y}. \end{align}$$
Now we have to show that
$$b^x b^y \geq b^{x+y}.$$
Case I. When $x+y$ is irrational:
If $t$ is a rational number such that $t \leq x+y$, then since $x+y$ is irrational, we can also conclude that $t < x+y$.
So we can find a rational number $r$ such that
$$ t-y < r < x.$$
Then
$$t-r < y < x+y -r.$$
Let's take $s \colon = t-r$. Then $s \in \mathbb{Q}$. And $s < y$.
Thus, we have written $t$ as $t = r + s$, where $r, s \in \mathbb{Q}$, with $r < x$, $s < y$.
So, when $x + y \in \mathbb{R} - \mathbb{Q}$, then we have
$$\begin{align} b^{x+y} &= \sup B(x+y) = \sup \{ \ b^t \ \colon \ t \in \mathbb{Q}, \ t \leq x+y \ \} \\ &= \sup \{ \ b^t \ \colon \ t \in \mathbb{Q}, \ t < x+y \} \\ &= \sup \{ \ b^{r+s} \ \colon \ r \in \mathbb{Q}, \ s \in \mathbb{Q}, \ r< x, \ s < y \} \\ &= \sup \{ \ b^r b^s \ \colon \ r \in \mathbb{Q}, \ s \in \mathbb{Q}, \ r< x, \ s < y \} \\ &= \sup \{ \ b^r \ \colon \ r \in \mathbb{Q}, \ r < x \ \} \sup \{ \ b^s \ \colon \ s \in \mathbb{Q}, \ s < y \} \\ &\leq \sup \{ \ b^r \ \colon \ r \in \mathbb{Q}, \ r \leq x \ \} \sup \{ \ b^s \ \colon \ s \in \mathbb{Q}, \ s \leq y \} \\ &= \sup B(x) \sup B(y) \\ &= b^x b^y. \end{align}$$
Case II. What if $x + y \in \mathbb{Q}$?
In this case, we can conclude that both $x$ and $y$ are irrational.
How do we proceed with showing the remaining reverse inequality in this particular case?