Let $\alpha=\lim\limits_{n\to\infty}\frac1{n+1}+\frac1{n+2}+\dots+\frac1{2n}$
The following is taken from this answer:
In this answer, It is shown that $\left(1+\frac1n\right)^n$ increases and $\left(1+\frac1n\right)^{n+1}$ decreases to $e$. Thus,
$$
\left(1+\frac1n\right)^n\le\left(1+\frac1{n+1}\right)^{n+1}\le\dots\le\left(1+\frac1{n+k}\right)^{n+k}\tag{5}
$$
and
$$
\left(1+\frac1n\right)^{n+1}\ge\left(1+\frac1{n+1}\right)^{n+2}\ge\dots\ge\left(1+\frac1{n+k}\right)^{n+k+1}\tag{6}
$$
Putting $(5)$ and $(6)$ together yields, for $0\le k\le n$,
$$
\left(1+\frac1{n+k}\right)^{\frac{n}{n+1}}\le\left(1+\frac1{n+k}\right)^{\frac{n}{n+k}\frac{n+k+1}{n+1}}\le\left(1+\frac1n\right)^\frac{n}{n+k}\le\left(1+\frac1{n+k}\right)\tag{7}
$$
Therefore,
$$
\begin{align}
e^\alpha
&=\lim_{n\to\infty}\left(1+\frac1n\right)^{n\left(\frac1{n+1}+\frac1{n+2}+\dots+\frac1{2n}\right)}\tag{8}
\end{align}
$$
and by $(7)$
$$
\begin{align}
\left(1+\frac1n\right)^{n\left(\frac1{n+1}+\frac1{n+2}+\dots+\frac1{2n}\right)}
&\le\left(1+\frac1{n+1}\right)\left(1+\frac1{n+2}\right)\dots\left(1+\frac1{2n}\right)\\
&=\frac{2n+1}{n+1}\tag{9}
\end{align}
$$
Using the other direction of $(7)$, we get
$$
\left(\frac{2n+1}{n+1}\right)^\frac{n}{n+1}
\le\left(1+\frac1n\right)^{n\left(\frac1{n+1}+\frac1{n+2}+\dots+\frac1{2n}\right)}\tag{10}
$$
By the Squeeze Theorem, $(8)$, $(9)$, and $(10)$ say
$$
e^\alpha=2\tag{11}
$$
which, by definition, means
$$
\alpha=\log(2)\tag{12}
$$