Since:
$$ \prod_{j=0}^{i}\frac{3j+1}{5j+5} = \frac{1}{\left(\frac{5}{3}\right)^{i+1}\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)}\cdot B\left(\frac{4}{3}+i,\frac{2}{3}\right) \tag{1}$$
we have:
$$ S=\sum_{i\geq 0}(-1)^i \prod_{j=0}^{i}\frac{3j+1}{5j+5} = \frac{\sqrt{3}}{2\pi}\int_{0}^{1}\sum_{i\geq 0}(-1)^i \left(\frac{3}{5}\right)^{i+1}x^{1/3+i}(1-x)^{-1/3}\,dx \tag{2}$$
hence:
$$ S = \frac{\sqrt{3}}{2\pi}\int_{0}^{1}\frac{3x^{1/3}}{(1-x)^{1/3}(5+3x)}\,dx =\frac{\sqrt{3}}{2\pi}\int_{0}^{+\infty}\frac{3z^{1/3}}{(1+z)(5+8z)}\,dz\tag{3}$$
where in the last step we set $x=\frac{z}{1+z}$. That leads to:
$$ S = \frac{\sqrt{3}}{2\pi}\int_{0}^{+\infty}\frac{9t^3}{(1+t^3)(5+8t^3)}\,dt=\frac{\sqrt{3}}{2\pi}\left(\int_{0}^{+\infty}\frac{3\,dt}{1+t^3}-\int_{0}^{+\infty}\frac{15\,dt}{5+8t^3}\right) \tag{4}$$
and the last integrals can be easily computed through the residue theorem or other techniques, leading to:
$$ S = \color{red}{1-\frac{1}{2}\sqrt[3]{5}}.\tag{5} $$