We give a combinatorial proof for the claim. It is contained in the following
more general
$\mathbf{Theorem.}$ The number $s_{n,m}$ of surjective maps
$f:[m]\rightarrow [n]$ is given by
$$s_{m,n}= n^m-{n\choose 1}(n-1)^m+{n\choose 2}(n-2)^m- \ldots +(-1)^n
{n\choose n-1} 1^m. $$
In particular
$$ n!=
\sum_{i=0}^n
(-1)^i {n\choose i} (n-i)^n; $$
and if $n>m$ then $s_{n,m}=0$ (which is a proof of the original claim).
For an integer $k\geq 1$ let $[k]:=\{1,\ldots,k\}.$
Let $\Omega$ be the family of all maps
$f:[m]\rightarrow [n],$ and let $A_j=\{f\in \Omega: f([m]) \subseteq [n]-\{j\}\},$ for $j=1,\ldots, n.$ A map $f\in \Omega$ is non-surjective if $f\in A_j$ for some $j.$ For $J\subseteq [n]$ we note
$A_J:=\bigcap_{i\in J} A_j=\{f\in \Omega: f([m]) \subseteq [n]-J\}.$
We get : $f$ is surjective iff $f \in \Omega-\bigcup_{j=1}^n A_j.$
Thus the number of surjective maps is by inclusion-exclusion
\begin{eqnarray*}
|\Omega -\bigcup_{j=1}^n A_j|&=&
|\Omega|-|\bigcup_{j=1}^n A_j|\\
&=& n^m - \sum_{i=1}^n (-1)^i
\sum_{\scriptsize \begin{array}{c}
I\subseteq [n] \\|I|=i
\end{array}} |A_I| \\
& = & n^m- \sum_{i=1}^n (-1)^i
\sum_{\scriptsize \begin{array}{c}
I\subseteq [n] \\
|I|=i
\end{array}} (n-|I|)^m = \sum_{i=0}^n
(-1)^i {n\choose i} (n-i)^m.
\end{eqnarray*}
We thus get the first part. The second part is consequence of that the surjective functions from
$[n]$ to $[n]$ are exactly the bijective ones; and of these there exist precisely $n!.$ Finally if $n>m$ there do not exist any surjective maps,
so then $s_{n,m}=0.$ $\Box$