Here is one of the most famous equation called Sherman–Morrison formula (1951) when we want to get an inverse matrix.
$$(A+vw^{\text{T}})^{-1}=A^{-1}-\cfrac{A^{-1}vw^{\text{T}}A^{-1}}{1+{w}^{\text{T}}A^{-1}v}$$
Then, we consider to get the inverse matrix $(A+\lambda E)^{-1}$ where $E$ is an identical matrix and $\lambda$ is scalar. This is my opinion but I suppose that identical matrix can be expressed using vector $\bf{e}$ which is defined below.
$$\bf{e}=[\it{e_{\rm{1}}} \it{e_{\rm{2}}} \dots \it{e_{\rm{i}}} \dots \it{e_{\rm{n}}}\rm{]^{\text{T}}}$$
The vector has a characteristic which can be described to multiply another identical vector.
$$ E=\bf{e e^{\text{T}}}=[\it{e_{i}e_{j}}\rm{]} \ \ Then \ \ \ \rm{ \begin{cases} 1 \ \ (\it{i=j}\rm{)}\\ \\ 0 \ \ (i \not= j) \end{cases} } $$
Therefore, $(A-\lambda E)^{-1}$ can be evaluated below using the first formula and my definition.
$$(A+\lambda \bf{e e^{\text{T}}}\rm{)}^{-1}=\it{A}^{\rm{-1}}-\cfrac{\it{A}^{\rm{-1}}\lambda\bf{e e^{\text{T}}}\it{A^{\rm{-1}}}}{\rm{1}+\lambda\bf{e^{\text{T}}}\it{A}^{\rm{-1}}\bf{e}}$$
Thus, $$\it{A}^{\rm{-1}}\bf{e e^{\text{T}}}\it{A^{\rm{-1}}}=A^{\rm{-2}}$$
$$\displaystyle \bf{e^{\text{T}}}\it{A}^{\rm{-1}}\bf{e}=\sum_{\it{i,j}=\rm{0}}^{\rm{n}}\it{\widetilde{a}_{i,j}e_{i}e_{j}}=\sum_{\it{i}=\rm{0}}^{\rm{n}}\it{\widetilde{a}_{i,i}}=\rm{Tr}(\it{A^{\rm{-1}}}\rm{)}$$
Eventually,
$$(A+\lambda E)^{-1}=A^{-1}-\cfrac{\lambda A^{\rm{-2}}}{1+\lambda\rm{Tr}(\it{A}^{\rm{-1}}\rm{)}}$$
But, this suggestion is totally wrong. In addition the similar question already submitted here. Although, I don't know why is wrong about my consideration.
Thanks.