I need to solve:
$$z^2+(1+i)z+i=0$$
first of all I used $$z = (a+ib)$$ and I get:
$$(a+ib)^2+(1+i)(a+ib)+i=0$$ $$a^2-b^2+2aib+a+ib+ia-b+i=0$$
then I have ordered, on the left the number without the $i$ and on the right all the number with the $i$:
$$\underbrace{a^2-b^2+a-b}_\text{real} + \underbrace{2aib+ib+ia+i}_\text{imaginary} = 0$$
So I have set this:
$$\begin{cases} a^2-b^2+a-b=0 \\ 2aib+ib+ia+i \end{cases}$$
$$\begin{cases} a(a+1)-b(b-1) = 0 \\ 2aib+ib+ia+i \end{cases}$$
How can I procede? I can say that the first equation is true when $a=b$