$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[2]{\,\mathrm{Li}_{#1}\left(\,{#2}\,\right)}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\color{#f00}{\mathrm{P.V.}\int_{0}^{\infty}{\dd t \over 1 - t^{4}}} &\
\stackrel{\mathrm{def.}}{=}\
\lim_{\epsilon \to 0^{+}}\pars{%
\int_{0}^{1 - \epsilon}{\dd t \over 1 - t^{4}} +
\int_{1 + \epsilon}^{\infty}{\dd t \over 1 - t^{4}}}
\\[3mm] & =
\lim_{\epsilon \to 0^{+}}\pars{%
\int_{0}^{1 - \epsilon}{\dd t \over 1 - t^{4}} +
\int_{1/\pars{1 + \epsilon}}^{0}{t^{2} \over 1 - t^{4}}\,\dd t}
\\[3mm] & =
\lim_{\epsilon \to 0^{+}}\pars{%
\int_{0}^{1 - \epsilon}{\dd t \over 1 - t^{4}} -
\int_{0}^{1/\pars{1 + \epsilon}}{t^{2} - 1 \over 1 - t^{4}}\,\dd t -
\int_{0}^{1/\pars{1 + \epsilon}}{\dd t \over 1 - t^{4}}}
\\[3mm] & =
\lim_{\epsilon \to 0^{+}}\pars{%
-\int_{1 - \epsilon}^{1/\pars{1 + \epsilon}}{\dd t \over 1 - t^{4}} +
\int_{0}^{1/\pars{1 + \epsilon}}{\dd t \over 1 + t^{2}}}\tag{1}
\end{align}
However,
\begin{align}
0 &< \verts{-\int_{1 - \epsilon}^{1/\pars{1 + \epsilon}}{\dd t \over 1 - t^{4}}} <
\verts{\pars{{1 \over 1 + \epsilon} - 1 + \epsilon}
{1 \over 1 - 1/\pars{1 +\epsilon}^{4}}}
\\[3mm] & =
\verts{-1 + \epsilon + {1 \over 2 + \epsilon} +
{1 \over 2 + \epsilon\pars{2 + \epsilon}}}\ \to\
\stackrel{\epsilon\ \to\ 0}{\large\color{#f00}{0}}\tag{2}
\end{align}
$$
\mbox{Then, with}\ \pars{1}\ \mbox{and}\ \pars{2},\quad
\color{#f00}{\mathrm{P.V.}\int_{0}^{\infty}{\dd t \over 1 - t^{4}}} =
\int_{0}^{1}{\dd t \over 1 + t^{2}} = \color{#f00}{\pi \over 4}
$$