$$F(K,AL) = \left [ \alpha K^{\rho} + (1-\alpha) (AL)^{\rho} \right ]^{\frac{1}{\rho}},$$
So $K$ and $AL$ are the variables here.
$lim_{K\rightarrow 0}\dfrac{\partial F}{\partial K}=lim_{K\rightarrow 0}\alpha K^{\rho -1} \left [ \alpha K^{\rho} + (1-\alpha) (AL)^{\rho} \right ]^{\frac{1-\rho}{\rho}}=0\cdot[0+(1-\alpha)(AL)^\rho]^{\frac{1-\rho}{\rho}}$
This expression has to approach infinity, so by intuition, the expression on the right $[(1-\alpha)(AL)^\rho]^{\frac{1-\rho}{\rho}}$ should be infinity for the limit to approach infinity!
The most reasonable value for $\rho$ as you said is 0 since $\dfrac{1-0}{0}\rightarrow \infty$.
So let us find the limit as $\rho\rightarrow 0$
$$Y=lim_{K\rightarrow 0}lim_{\rho\rightarrow 0}\dfrac{\partial F}{\partial K}=lim_{K\rightarrow 0}lim_{\rho\rightarrow 0}\quad\!\!\alpha K^{\rho -1} \left [ \alpha K^{\rho} + (1-\alpha) (AL)^{\rho} \right ]^{\frac{1-\rho}{\rho}}$$
\begin{align}
ln(Y)&=lim_{K\rightarrow 0}lim_{\rho\rightarrow 0}\quad\!\! ln\left(\alpha K^{\rho -1} \left [ \alpha K^{\rho} + (1-\alpha) (AL)^{\rho} \right ]^{\frac{1-\rho}{\rho}}\right)\\
&=lim_{K\rightarrow 0}lim_{\rho\rightarrow 0}\quad\!\! \alpha\left[(\rho-1)ln(K)+\dfrac{1-\rho}{\rho}ln(\alpha K^\rho+(1-\alpha)(AL)^\rho) \right]\\
&=\alpha\left[ \quad\!\!\!lim_{K\rightarrow 0}lim_{\rho\rightarrow 0}\quad\!\!(\rho-1)ln(K)+ lim_{K\rightarrow 0}lim_{\rho\rightarrow 0} \quad\!\!\dfrac{1-\rho}{\rho}ln(\alpha K^\rho+(1-\alpha)(AL)^\rho) \right]\\
&=\alpha\left[-1\cdot (-\infty)\quad +\quad\infty\cdot 0 \right]
\end{align}
While one can use L'Hopital's to calculate the limit on the right hand side $(lim_{K\rightarrow 0}lim_{\rho\rightarrow 0} \quad\!\!\dfrac{1-\rho}{\rho}ln(\alpha K^\rho+(1-\alpha)(AL)^\rho) )$ the actual value of this limit is irrelevant as calculating the limit with an indeterminate form of $0\cdot \infty$ would give you any value from $[0,\infty)$.
Thus, $ln(Y)\rightarrow \infty$ and $Y\rightarrow \infty$. The rest of the problem (partial $AL$, the other limit condition) would be similar calculations with different limits.