I want to show that $\left (1+\frac{1}{x} \right )^{x}$ increases.
I have to show that $\left (1+\frac{1}{x+1} \right )^{x+1} > \left (1+\frac{1}{x} \right )^{x}$
$\left (1+\frac{1}{x}-\frac{1}{x(x+1)} \right )^{x+1} > \left (1+\frac{1}{x} \right )^{x}$
I triend to define $ \left (1+\frac{1}{x} \right ) = k$
$\left (k-\frac{1}{x(x+1)} \right )^{x+1} > k^x$
Now im pretty stuck.