0

I want to show that $\left (1+\frac{1}{x} \right )^{x}$ increases.

I have to show that $\left (1+\frac{1}{x+1} \right )^{x+1} > \left (1+\frac{1}{x} \right )^{x}$

$\left (1+\frac{1}{x}-\frac{1}{x(x+1)} \right )^{x+1} > \left (1+\frac{1}{x} \right )^{x}$

I triend to define $ \left (1+\frac{1}{x} \right ) = k$

$\left (k-\frac{1}{x(x+1)} \right )^{x+1} > k^x$

Now im pretty stuck.

NM2
  • 721

1 Answers1

2

Let $x_n = (1 + \frac{1}{n})^n$. $\frac{x_{n+1}}{x_n} = \frac{n+2}{n+1}(\frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}})^n = \frac{n+2}{n+1} (\frac{n(n+2)}{(n+1)^2})^n = \frac{n+2}{n+1} (1 - \frac{1}{(n+1)^2})^n > \frac{n+2}{n+1}(1 - \frac{n}{(n+1)^2})$ (Bernoulli's inequality).

Then $\frac{n+2}{n+1}(1 - \frac{n}{(n+1)^2}) = 1 + \frac{1}{n+1} - \frac{n}{(n+1)^2} - \frac{n}{(n+1)^3} = 1 + \frac{1}{(n+1)^3} > 1$.