Can I just drop the limit sign and replace $l+1$ by $\infty$?
These mean the same thing:
$$
\prod_{j=1}^\infty\frac{2j}{2j-1}\frac{2j}{2j+1}
\stackrel{\text{def}}{\equiv}\lim_{\ell\to\infty}\prod_{j=1}^\ell\frac{2j}{2j-1}\frac{2j}{2j+1}
$$
Does it change anything if I replace $l+1$ by $l$ ?
Since $\ell\to\infty\iff\ell-1\to\infty$, we have
$$
\begin{align}
\lim_{\ell\to\infty}\prod_{j=1}^\ell\frac{2j}{2j-1}\frac{2j}{2j+1}
&=\lim_{\ell-1\to\infty}\prod_{j=1}^\ell\frac{2j}{2j-1}\frac{2j}{2j+1}\\
&\equiv\lim_{\ell\to\infty}\prod_{j=1}^{\ell+1}\frac{2j}{2j-1}\frac{2j}{2j+1}
\end{align}
$$
One way to evaluate the infinite product
$$
\begin{align}
\prod_{j=1}^{\ell}\frac{2j}{2j-1}\frac{2j}{2j+1}
&=\frac{2^{2\ell}\ell!^2}{(2\ell)!}\frac{2^{2\ell+1}\ell!(\ell+1)!}{(2\ell+2)!}\\
&=\frac{2^{4\ell}\ell!^4}{(2\ell)!^2(2\ell+1)}\\
&=\left(\frac{4^\ell}{\binom{2\ell}{\ell}}\right)^2\frac1{2\ell+1}
\end{align}
$$
Using inequality $(10)$ from this answer, we get
$$
\frac{\pi\left(\ell+\frac14\right)}{2\ell+1}
\le\prod_{j=1}^{\ell}\frac{2j}{2j-1}\frac{2j}{2j+1}
\le\frac{\pi\left(\ell+\frac13\right)}{2\ell+1}
$$
Using the Squeeze Theorem, we get
$$
\lim_{\ell\to\infty}\prod_{j=1}^{\ell}\frac{2j}{2j-1}\frac{2j}{2j+1}=\frac\pi2
$$
Another way to evaluate the infinite product
$$
\begin{align}
\prod_{j=1}^\ell\frac{2j}{2j-1}\frac{2j}{2j+1}
&=\prod_{j=1}^\ell\frac{j}{j-\frac12}\frac{j}{j+\frac12}\\
&=\frac{\Gamma(\ell+1)/\Gamma(1)}{\Gamma\left(\ell+\frac12\right)/\Gamma\left(\frac12\right)}\frac{\Gamma(\ell+1)/\Gamma(1)}{\Gamma\left(\ell+\frac32\right)/\Gamma\left(\frac32\right)}\\
&=\frac{\Gamma\left(\frac12\right)\Gamma\left(\frac32\right)}{\Gamma(1)^2}\frac{\Gamma(\ell+1)\Gamma(\ell+1)}{\Gamma\left(\ell+\frac12\right)\Gamma\left(\ell+\frac32\right)}\\
&=\frac12\frac{\Gamma\left(\frac12\right)^2}{\Gamma(1)^2}\frac{\Gamma(\ell+1)^2}{\Gamma\left(\ell+\frac12\right)^2}\frac1{\ell+\frac12}\\
\end{align}
$$
By Gautschi's Inequality,
$$
\frac\ell{\ell+\frac12}\le\frac{\Gamma(\ell+1)}{\Gamma\left(\ell+\frac12\right)}\frac1{\ell+\frac12}\le\frac{\ell+1}{\ell+\frac12}
$$
By the Squeeze Theorem,
$$
\begin{align}
\lim_{\ell\to\infty}\prod_{j=1}^\ell\frac{2j}{2j-1}\frac{2j}{2j+1}
&=\frac12\frac{\Gamma\left(\frac12\right)^2}{\Gamma(1)^2}\cdot1\\
&=\frac\pi2
\end{align}
$$